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Analysis of Policy-based Security Management
System in Software-defined Networks

Keshav Sood, Kallol Krishna Karmakar, Vijay Varadharajan, Uday Tupakula, and Shui Yu

Abstract—In software-defined networks, policy-based security
management or architecture (PbSA) is an ideal way to dy-
namically control the network. We observe that on the one
hand, this enables security capabilities intelligently and enhance
fine grained control over end user behavior. But, on the other
hand, dynamic variations in network, rapid increases in security
attacks, geographical distribution of nodes, complex heteroge-
neous networks etc., have serious effects on the performance of
PbSAs. These affect the flow specific Quality of Service (QoS)
requirements with further degradation of the performance of
the security context. Hence, in this letter, PbSAs performance is
evaluated. Key factors including number of rules and rule-table
size, position of rules, flow arrival rate, and CPU utilization
are examined, and found to have considerable impact on the
performance of PbSA’s.

Index Terms—Performance analysis, SDN security, PbSA.

I. Introduction

IN Software-defined Networking (SDN), policy-based se-
curity management1 aims to find more intelligent ways to

reestablish fine grained control over the network and user
behavior [1]. Policy servers are, in effect, general-purpose
rule (expression) engines in which a rule can, in principle,
be written to achieve a desired outcome. This outcome may
include not just generalized traffic management, but also flow-
oriented security management, maintenance of Quality of
Service (QoS), deep packet inspection, queuing mechanisms,
load balancers etc. The aim of proposing policy based security
management is to pick off fine-grained secure traffic flows with
a high degree of visibility and transparency in order to identify
end user meta-data at increasingly granular levels [1].

There are many policy-based solutions existing in SDN
including Procera [2], CloudWatcher [3], Fresco [4], Fre-
netic [5], PolicyCop [6], OpenSec [7], PbSA [1], etc. Re-
searchers have noted that existing solutions have some lim-
itations such as granular control, security, and complexity in
expressing the security rule [1], [7]. Very recently, the authors
proposed a novel policy-based security architecture (PbSA) [1]
to secure end-to-end service in an SDN enabled autonomous
domain. The design and implementation of this novel archi-
tecture enables fine granular enforcement of security policies.
We observe that the generic work-flow of most of the existing
policy based security management proposals [1]- [7] is the
same, i.e., the PbSA system stores different policy expressions
or rules. These policy expressions are capable of implementing
polices, checking the conflicts and enforcing required policy,
accordingly. Furthermore, other work has been done to detect

1The terms policy-based management, policy-based security, and policy-
based security architecture (PbSA) are used interchangeably in this letter.

effectively the policy conflict or violations so that no two
policy expressions have conflicts [8]- [10], however, this is
an entirely new module to work on. We focus instead on
the general performance analysis of policy based security
frameworks [1]- [7].

To the best of our knowledge, existing solutions do not
include a theoretical performance analysis such as the one
proposed here. We emphasize that the evaluation of existing
architectures is essential. Firstly, this helps in the design of
PbSAs so as to constantly monitor network parameters, detect
ongoing attacks and help in determining the best course of
action without degrading optimal performance. Secondly, this
evaluation helps to determine the volume of data that can be
supplied into the PbSA without compromising the applica-
tion’s QoS requirements of flow. Further, the service time to
check the flows cannot violate the specific application’s QoS.
This not only affects the QoS but actually allows reasonable
time for attackers or hackers to access the network and perform
malicious activities [11]. Finally, it can alleviate the issue of
lookup speed in memory architectures of PbSA. The number
of policies considerably affects the reaction time of the policy
enforcement architecture to alert the associated network when
the traffic rate increases [7].

These significant benefits motivated us to analyze the
performance of the policy based security architectures. For
our analysis, we picked a very recent proposed solution [1].
Our findings can be generalized and applied on any existing
solution. This is because at a high level the work-flow of every
policy based solution is the same, i.e., based on match-action
sequence. More detail is given in Section II.

We used classical queuing model tools, i.e., M/Geo/1
analytical tool [11], [12] to evaluate the PbSA’s behavior at a
given flow arrival rate. Key factors such as: number of policy
rules, rule matching probability of flow in policy-table, flow
arrival rate, the impact of rule expressions on throughput, CPU
utilization, and CPU heap memory are evaluated.

Our contributions are as follows:

1) The PbSA in SDN is evaluated and it is shown that
the PbSA’s performance is considerably affected by key
factors, i.e., high flow incoming rate, number of policy
expressions or rules, and rule position.

2) This early evaluation gives us insight into the design
of policy based security management architectures in
order to structure the size of the multi-domain networks.
Structuring and prioritization of the rules in the PbSA
provided QoS must be preserved.
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II. A High Level View and Work Flow of Policy Server

In this section, the background of PbSA and its work flow 
is discussed to help readers to better comprehend the concept 
of PbSAs in SDN. A high level view of PbSA architecture 
is shown in Fig. 1. PbSA is a software-based application 
that runs over the SDN controller or can be a part of the 
controller [1]. The end hosts are connected to the forwarding 
devices (underlying network) which is then connected to the 
SDN controller. The SDN controller forwards the flow t o the 
PbSA via the policy manager at PbSA. The Policy manager 
is responsible for coordinating every single operation in 
the network. This includes capturing information from edge 
devices, extracting the required information to match the 
security rule or policy expression, and more. A simplified 
policy expression or rule could be as follows:

PE =< FlowID, S ourceAS , DestAS , S ourceHostIP 
DestHostIP, S ourceMAC, DestMAC, U ser, FlowConst 
DomConst, S ervices, S eq − path >:< Actions >

Here, PE indicates the policy expression. FlowID is the 
unique ID indicates that the sequence of the flow b elongs to 
that ID. The range of attributes that a FlowID (or Flow ID 
tuple) comprises is: type of packets, security profile indicating 
the set of security services (example, secure routing, identify-
ing certain types of attacks, etc.) associated with the packets 
in the flow, e tc [1]. More a ttributes can be added in the tuple 
based on the requirements, and wild card rules are also ac-
cepted. Further, SourceAS and DestAS are the network domain 
attributes of source and destination respectively, SourceHostIP 
and DestHostIP are source and destination host attributes, 
SourceMAC and DestMAC are the MAC address of source 
and destination respectively, Flow constraints and Domain 
constraints are defined as FlowConst and DomConst associated 
with flow, services indicates to the particular service for which 
the policy expression applies, sequence path indicates the 
sequences of switches whereas with domain communicates 
with another domains. This template is an example and one 
can create it or any similar template according to the network 
and service requirements. Now, below, we have discussed the 
working of each sub-module.

Policy Manager. It coordinates different domains and for-
wards the flow t o t he s tate-collector s ub-module. I t contains 
policy repository and topology repository. The first contains 
the different policy rules which is written in a simple language-
based template [13] (JSON Policy repository). The latter 
contains the network topology information derived using a 
trace out mechanism specified by [1].

Decision Maker. This is used to analyze the arriving 
network traffic against the existing security policy expression, 
stored in policy-repository, for a particular target. Whenever 
an exact policy-match is found, it conveys the associated rule 
to the decision enforcer.

Decision Enforcer. It enforces the decision on particular 
flow a nd a lso u pdates t he s tate-collector a nd r epository sub 
module.

From Fig. 2, when a flow arrives at the PbSA application,

Underlying Network

SDN Controller

Policy Based Security Architecture or PbSA Modules 
(PbSA, a software based secuity application)

Policy Manager

State‐collector
and repository

Decision maker Decision enforcer

Southbound APIs

Fig. 1. A high level view of policy-based security framework.
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Fig. 2. Generalized work-flow sequence policy-based security framework.

it needs to go through the rule-match engine or expression to
find an existing policy expression. This lookup varies widely
depending on many key factors which have an influence on
PbSA’s performance. In case the rule-table is not sorted, the
flow needs to be checked against every existing rule in the
search engine. However, the time required for the matching
varies widely, depending on many key factors that include the
number of tuples to be matched, the performance impact of
multiple tables, etc. This evaluation is not a part of this article
but nevertheless, it emphasizes the critical importance of inves-
tigating the PbSA’s performance. When a flow arrives at PbSA
and when a policy expression is satisfied, only then is the
associated action performed, e.g., allow or deny the request.
For example, PE10 =< ∗, ∗, 172.56.18.01, 172.56.16.08, 38 :
2C : 6A : 1E : 60 : FF, ∗, ∗, , 80,Con f , Intg(S W1 : S W6 :
S W10 >:< Deny >), indicates that the flow from host
IP 172.56.18.01 and MAC 38:2C:6A:1E:60:FF accessing the
HTTP server on IP 172.56.16.08, should be securely routed
via. Switch S W1− > S W6− > S W10.

III. MathematicalModel
SDN researchers assume that the controller service time

obeys exponential distribution which is in line with the ex-
isting research work [12], [14]. However, PbSA’s work-flow
is different. The policy matching function must be considered.

We assume that there are N rules or policy expressions
Fi(i = 1, 2, 3, ...N) in the PbSA rule search engine as shown
in Fig. 2. Upon arrival of a new flow, the PbSA goes through
the policy expression table one by one in order to verify the
existence of a rule with matching fields. The probability that
a matching rule (of incoming flow) or policy succeeds at a
particular rule is specified as Fi and pi respectively. In such
a case, the system has no prior information on flow matching
probability distribution, thus, it is reasonable to assume that
the rule matching probability of N rules is the same [15], i.e.,
p1 = ... = pi = ... = pN = p > 0. Now, assume R is the
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Fig. 3. (a) The influence of number of policy rules at a given flow arrival rate on average response time, (b) The rule matching probability and its impact
on the mean response, time, (c) The incoming flow rate and the number of rules impact on PbSA’s CPU utilization.

number of trails, to match rule, for the first match, then using
geometrical distribution we obtain the matching probability at
rule Fi as;

Pr[R = i] =


(1 − p)i−1 p 0 < i < N

(1 − p)N−1 i = N.
(1)

Here, the geometric distribution’s mean is calculated as

E[R] =
(1 − qN)

p
, (2)

here, q = 1 − p, p = 1/N, and the service time is defined as

t̄s =

N∑
i=1

(
Pr[R = i]

i∑
j=1

T j

)
, (3)

we assume that T j is the rule matching time for the jth rule.
We have mentioned that the N rules have the same matching
time (T1 = T2 = ... = TN = T ). Therefore,

t̄s =
T (1 − qN)

p
. (4)

Here, we observe that the service time, t̄s, is influenced by
multiple factors, i.e., the rule numbers as well as the matching
probability of the rule. Finally, using µ = 1/t̄s we can calculate
the response time of PbSA to particular flow. We use µ = 1/t̄s

in order to calculate the response time as our key metric of
this performance evaluation.

From [11] and [12] we consider PbSA as an M/Geo/1
model where the incoming flows obey Poisson distribution and
the service times obey Geometric distribution. Other work has
shown that by comparing the average response times in the
queue, the required service time by flow to match policy can
be easily determined [11]. In this case, the Imbedded Markov
Chain theory is helpful. We apply this in M/Geo/1 queue to
find out the number of flows and the expended service time
on them, respectively, in the system. We use the Pollaczek-
Khinchin (P-K) formula from [15] and further have taken the
key equations from [11] and [15] and rearranged as below.

r̄ = q̄/λ = t̄s +
λT 2E[R2]
2(1 − ρ)

. (5)

This concludes that the total time the flow spent in system is
the average of system service time plus the average time spent
in the queue. Another interesting factor for investigation is the
PbSA’s CPU utilization determined by U = λr̄.

IV. Experimental Results and Discussion

Now, the performance analysis and evaluation of the PbSA
architecture is discussed. The average flow response time
metric is used for PbSA performance evaluation. Firstly, we
use Matlab to analyze the average flow response time, µ, we
use µ = 1/t̄s, here, t̄s is taken from equation (4). Here, we set
N = 1, 000− 7, 000, p = 1/N, and T = 27µs. In existing stud-
ies, scientists determined that the time to match the incoming
packet with the existing rule depends on the average service
rate distribution, and experimentally proved that the time to
match any rule must be in microseconds [11]. Researchers
determined the mean rule matching time, at 10,000 rules, is
nearly 27µs [11]. We thus reasonably set T as 27µs based on
existing research conclusions.

In Fig. 3(a), we observe that more rules or policy expres-
sions at PbSA degrade the service capacity (QoS), and also,
PbSA takes more time to process the future arrival packets,
i.e., more policy expressions impact the mean response time
with respect to flow incoming rate λ. Thus, we emphasize
that the rule matching at PbSA, for security check of the
incoming flow, must be fast enough to maintain the security
and application specified QoS.

The rule matching probability vs. average response time is
shown in Fig. 3(b) at λ = 70. We observe that if the probability
of matching any rule is high, the PbSA’s response time to
flow is less. This motivates PbSA designers to structure the
rules in a rule search engine so that they match quickly. Thus,
we suggest that the rule position significantly affects packet
response time, however this is not viable in case a flow requires
us to check every rule for overlaps regardless of position. This
too affects the cost of updating, and modifying the rules.

Now, using U = λr̄, Fig. 3(c) depicts that these factors,
the mean response time of flows at a given flow arrival,
number and the position of rules, also have significant effect
on the CPU utilization at a given packet arrival rate, targeting
different rules. There is a corresponding increase in CPU
utilization with the increase in targeting rules. The utilization is
higher at N = 1, 000 because the rules do not impact heavily on
CPU processing requirements (low-priority processes consume
the CPU power at this time). In contrast with N = 3, 000 and
N = 7, 000 rules, the CPU is mainly busy processing policy
expressions or rules.

Now, emulation results using Mininet are discussed. We
used cBench in throughput-mode to measure the throughput of
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Fig. 4. (a) The impact of the policy expressions on throughput, (b) The relationship between CPU performance and policy expressions (c) The relationship
between CPU heap memory and number of policy expressions.

the controller. Each switch sends as many packet in messages
as possible to record the number of responses for the requests
it has sent to the controller. We use Core i7−7700k @4.20GHz
with 64 GB of RAM machine. The VMs are configured with
4 core CPUs and 12GB of RAM. In Fig. 4(a), we increase
the policy rules with eight switches, connecting 500 dummy
hosts in each case to an OpenFlow switch. As expected, the
throughput decreases as we increase the policy expressions.
The highest throughput is 12, 583flows/ms at 10 policy ex-
pressions. As the number of policy expressions increases, the
throughput decreases. Thus, more policy rules at PbSA system
increases the average response time to flow to get process at
PbSA (Fig 3(a)). Also, it reduces the controller throughput
because PbSA acts like another barrier before the flow actually
passes on to the controller (Fig. 4 (a)).

In Fig. 4(b), we have used JProfiler to analyze PbSA’s CPU
load while running PbSA over an ONOS Controller at eight
switches. We observe three phases. The first phase is the
controller’s normal operation phase in which the controller
starts and loads its basic modules, such as DHCP applications
and rule assistant. In the second phase, drivers are loaded and
in the third phase, PbSA operates and makes the relevant
decision. We observe that the CPU usage increases as we
increase the policy expressions in the first and second phase.

Finally, Fig. 4(c) shows the heap memory usage again in
three phases for a varying number of policy expressions.
Initially, memory usage increases gradually, more rapidly in
the second phase, and finally when PbSA carries out all
security checks, this memory availability increases again. In
the third phase (Fig. 4(c), PbSA operates on the requests from
the devices and makes the relevant decisions. With PbSA,
only permissible devices communicate, incurring less CPU and
Heap usages, as shown in third phase. Further, OS maintain
and monitor the heap memory usage and dumps the unused
heap memories in a cyclic order. Therefore, some cyclic drops
are evident in the graph.

V. Summary

PbSA’s response time for a given packet arrival rate, number
of policy expressions, and position of the rule by a corre-
sponding packet is evaluated. This helps in the design and
implementation of policy-based SDN architectures. Further, it
expands our knowledge to allow us to structure the size of
a domain with respect to the QoS requirements of the flows.

For example, structuring the devices in a domain (with policy
rules serving as a parameter in this structuring process) and
also structuring the rules in the policy base (e.g prioritizing
the rules in the policy base as per the response time). These
results can significantly improve the design of policy based
security architectures.
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